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Abstract. A quantal guiding centre theorys presented which allows a systematical study

of the separation of the different time scale behaviours of a quantum charged spinning particle
moving in an external inhomogeneous magnetic field. A suitable set of operators adapting to the
canonical structure of the problem and generalizing the kinematical momenta and guiding centre
operators of a particle coupled to a homogeneous magnetic field is constructed. This allows us
to rewrite the Pauli Hamiltonian as a power series in the magnetic lépgth./iic/e B making

the problem amenable to a perturbative analysis. The first two terms of the series are explicitly
constructed. The effective adiabatic dynamics turns out to be in coupling with a gauge field
and a scalar potential. The mechanism producing such magnetic-induced geometric-magnetism
is investigated in some detail.

1. Introduction

The motion of a charged particle in a strong inhomogeneous magnetic field is a nontrivial
problem displaying a variety of very interesting phenomena ranging from chaos to phase
anholonomy. Being of utmost importance in plasma physics, especially in the study of
magnetic confinement, the subject has been worked out in great detail in classical mechanics
with special attention to phenomenological implications as well as to formal aspects. The
canonical structure of the problem, in particular, has been deeply investigated only relatively
recently time by Littlejohn [1], revealing the appearance of geometry induced gauge
structures in the adiabatic motion of classical charged particles. Very little, on the other
hand, is known about the behaviour of quantum particles in strong inhomogeneous magnetic
fields. The reason is essentially that the techniques developed for classical mechanics
do not easily generalize to the quantum context. Some work has been done for neutral
spinning particles by Berry [2], Aharonov and Stern [3] and Littlejohn and Weigert [4] in
connection with geometrical phases, whereas a quantum treatment for charged spinning
particles is still missing. It is the purpose of this paper to presequantal guiding

centre theorywhere the coupling between the spin and spatial degrees of freedom of a
guantum charged spinning particle moving in a strong inhomogeneous magnetic field is
systematically taken into account. This allows us to extend to the quantum domain the
previous classical results. Our treatment, algebraic in nature, is a re-elaboration and a
simplification of the technique originally proposed by Littlejohn in classical mechanics. It

is based on a different choice of non-canonical variables adapting to classical as well as
guantum mechanics. Depending essentially on the canonical structure the method applies
indistinctly to both theories. Nevertheless, focus on the quantum problem.
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Figure 1. Different time scale behaviours of a charged particle in a strong magnetic field:
(a) fastrotation of the particle andlow guiding centre drift in a homogeneous fielth) (n the
inhomogeneous case the guiding centre drifts away from the field/éneslowly

In order to better understand the strong-field regime of a quantum particle moving in
an external magnetic field it is helpful to have in mind the main features of the equivalent
classical problem [5]. Let us therefore consider a classical particle of maswl charge
moving in a homogeneous magnetic field of strenBthAs is well known the trajectory of
the particle is represented by a helix wrapping around a field line, as sketched in fighre 1(
the particle performs a uniform circular motion of frequensy = ¢B/mc and radius
rg = mclv|/eB (Jvy| is the norm of the normal component of the velocity) in the directions
normal to the field, while the centre of the orbit, called théding centre moves freely
along a field line. Keeping fixed the initial condition, the stronger the magnetic field the
faster the rotation of the particle when compared with the drift along the field direction
and the smaller the portion of space explored by the particle around the field line. This
indicates the presence of different time scales in the dynamics of the system and gives the
reason why the motion in a very strong magnetic field may be studied along the same lines
as that in a weakly inhomogeneous one. Let us introduce now a small inhomogeneity in
the field. The picture of the motion should not change substantially. The particle keeps on
rotating around its guiding centre while the frequency and the radius now weakly depend
on the position. The guiding centre still drifts along a field line. In this case, however, the
guiding centre does not remain exactly on a single field line. It starts drifting very slowly in
the direction normal to the field. Three different time scale behaviours of the system may
therefore be distinguished: tHast rotation of the particle around the guiding centre, the
slow drift of the guiding centre along a magnetic field line and tleey slow drift of the
guiding centre in the direction normal to the field. The situation is sketched in figh)e 1(

For stronger magnetic fields the separation of these three degrees of freedom becomes more
clear.

An outlook to the canonical structure of the homogeneous case immediately makes
clear how the introduction of kinematical momenta and guiding centre operators allows
the description of these three degrees of freedom. This is briefly reported in section 2
where the relevant notations of the paper are also set up. After discussing the geometrical
complications involved in the adiabatic motion of a charged particle in an inhomogeneous
magnetic field, section 3, an appropriate set of non-canonical operators generalizing the
one used in the discussion of the homogeneous problem is constructed in section 4. These



A quantal guiding centre theory 2165

are obtained as formal power series in the magnetic lehgth +/ic/eB, which appears
naturally as the adiabatic parameter of the theory. The Pauli Hamiltonian describing the
motion of the particle is then rewritten in terms of the new adiabatic operators in sections 5
and 6, whereas the anholonomic effects appearing in the adiabatic separation of the fast and
slow/very slow degrees of freedom are discussed in section 7. Our results are summarized
in equations (42), (43) and (44). In the classical limit these reproduce correctly the classical
theory. Section 8 contains our conclusions.

2. Canonical structure of the guiding centre motion

Magnetic interactions appear essentially as modifications of the canonical structure of a
dynamical system. It is worthwhile to start by briefly discussing this peculiarity in the
elementary case of a quantum charged spinning particle in a homogeneous magnetic field.
This allows us to immediately focus on the heart of the problem establishing at the same
time terminology and notations. We consider, therefore, a %marticle of massn, charge

e and gyromagnetic factog moving in space under the influence of themogeneous

field B(x) = Bz. As in the inhomogeneous case, to be discussed later on, the physical
dimension of the magnetic field is reabsorbed in the scale fa&toB~Y/2, appropriately
rescaled, will play the role of the adiabatic parameter of our theory. Introducing an arbitrary
choice of the vector potential for the dimensionless field(x)/B, rota = z, the motion

of the particle is described by the Pauli Hamiltonian

1/ B \> TeB
H=_— (—th - ea) 1P s Q)
2m c mc

V = (b, dy, 9;) denoting the gradient operator ald = (oy, oy, 0;) the matrix-valued
vector constructed by means of the three Pauli matrices. As is well known the solution of
this simple problem was first obtained by Landau at the beginning of the thirties and leads
naturally to replace the standard set of canonical operaiprs —ind;, x', i = 1, 2,3,
by the gauge invariantinematical momentar; = p; — (eB/c)a; and theguiding centre
operators X' = x’ + (c/eB)e"n;. A straightforward computation yields the nonvanishing
commutation relation among the new variables

[roml = =m0 [ma X = XL X =it @

c eB

indicating mo—m1, m3—X° and X'-X? as couples of conjugates variables. Moreover, the
scale dependence of the commutators (2) allows us to identify the three pairs of operators
as describing respectively tHast the slow and thevery slow degrees of freedom of the
system (see e.g. [6]). In terms of the new gauge invariant operators Hamiltonian (1) can
be rewritten in the very simple fori{ = (1% + 2% + m3%)/2m + gheBos/mc. The
harmonic oscillator ternir;2 + m,?)/2m takes into account the rapid rotation of the particle
around its guiding centre. The free temm?/2m produces the slow drift of the guiding
centre along the straight magnetic field lines. As the very slow variabeand X2 are
constants of motion, the guiding centre does not move in the directions normal to the field.
Let us stress that in the canonical formalism the spatial rotation of the particle around its
guiding centre is taken into account by the phase space trajectory of a couple of conjugate
variables: the particle’s velocity componentsandr, in the directions normal to the field.
The presence of an external magnetic field therefore produces a rotation of the canonical
structure, mixing up spatial coordinates and canonical momenta in new canonical operators
adapting to the different time scale behaviours of the particle! In section 4 we will construct
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such ‘adapted operators’—as power series in the adiabatic parameter—for the motion of a
guantum charged spinning particle in an arbitrary magnetic field. This allows the extension
of the Hamiltonian approach developed by Littlejohn [1] to quantum mechanics. The case
of a magnetic field with constant direction has been previously considered in [6]. Some
preparatory material is, however, necessary.

First of all it is convenient to introduce dimensionless quantities by factorizing the energy
scalehwg, wp = eB/mc, from the Hamiltonian. This leads one to redefine kinematical
momenta and guiding centre operators as

= —ilpd; — lp ta;(x) ©))

Xi :xi+138ij7'[j (4)
lp = /hc/eB being themagnetic length The relevant commutation relations may then be
recast in the compact and very convenient form

[7;, ;] = iejj
! ) ! fast
[0i, 0j] = igijion ®)
(7, X7] = —ilp88] slow
[X', XI] = —ilg2e" very slow

where the spin variables have also been considered.
A second and more serious task is the discussion of the geometrical structure responsible
for the anholonomic effects appearing in the adiabatic motion in a strong magnetic field.

3. Magnetism and geometric-magnetism

The beautiful analysis of the adiabatic separatiofiast andslow degrees of freedom in a
guantum system proposed by Berry [7], Kuratsuji and lida [8], Moetsl [9], Jackiw [10]

and others, has pointed out that in lowest order the reaction of the fast to the slow dynamics
is through a geometry-induced gauge structure resembling that of (electro-) magnetism.
This phenomenon has been identified and found to be important in a variety of physical
contexts [11] and has been recently referred to by Berry and Robbins [1§¢a@setric-
magnetism A rather curious fact, first pointed out by Littlejohn [1] in a series of papers on
the canonical structure of classical guiding centre motion, is that, in some circumstances,
magnetism itself may generate geometric-magnetism. The aim of the present section is to
discuss the geometry involved in such ‘magnetic-induced geometric-magnetism’.

It is useful to begin by briefly recalling the geometrical character of the kinematical
guantities characterizing the motion of a particle in space. This will lead to a rather intuitive
picture of the geometrical structure involved in the adiabatic motion of a charged spinning
particle in a strong magnetic field, allowing us at the same time to frame it in a general
and rigorous context. The state of a particle moving in space is completely characterized
by its positiona and its velocityv, i.e. by a point in thetangent bundleT R® of the
three-dimensional Euclidean spaké. The flat parallel transport aR® makes it natural to
parameterize every fibr&, R® of the bundle by means of a fixed reference framerih
that is, to identify the tangent space in every paintith the physical space itself. Such
an identification is certainly very useful in most circumstances, but it is just a convention.
In principle we are free to choose arbitrarily the frameTpR® in everyz. The parallel
transport—and not the way we describe it—is all that matters. This freedom of arbitrarily
rotating the reference frame of the tangent space in every pogtunsists a local O (3)
symmetry and plays a crucial role in what follows. To visualize the situation, therefore, we
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Figure 2. Framing the tangent bundier? of the physical spaceaj by means of a single fixed
frame in R3; (b) by using local reference frames adapting to the magnetic field lines geometry.

shall picture the Euclidean space as filled up with orthonormal reference frames. To start
with, we can imagine all of them as being combed parallel to a single fixed ffamg 2}
in R® (see figure 2)), but this is not always the best choice even for the flat case.

3.1. The magnetic line bundle

As qualitatively sketched above, the motion of a charged spinning particle in a strong
magnetic field is characterized by the separation of time scales in the three degrees of
freedom, making the system amenable to a perturbative analysis. In the lowest order of
approximation the particle performsfast rotation in the plane normal to the field line

at which its guiding centre is located. This is taken into account by the two components
normal to the field of the particle’s velocity (to this order a couple of conjugate variables).
Disregarding theslow drift of the guiding centre along the field line and thery slow
motion, the velocity of a particle whose guiding centre is locatedejnis effectively
constrained to the plane, generated by the vectors normal to the fieldcinin every point

of the space the magnetic fieldx) picks the complex lings, out of the tangent space

T, R, reducing thetangent bundleT R® to a complex line bundle, hereafter theagnetic

line bundle M. It is then natural to use the loc8lO (3) symmetry of the theory to adapt

the parameterization df R® to the sub-bundleV! by combing, say, thé direction of the
frame of everyT, R® according to the direction of the field. We so smoothly introduce
point-dependent adapted reference fraf@se,, es} in such a way that in every point

the vectorses(x), ex(x) generateu, while es(x) is aligned withb(x) (see figure 2Af)).

Such reference frames are commonly used in the discussion of geometrically non-trivial
physical problems such as in general relativity and are referred émlaglonomic frames

It is worthwhile to note that fixinges according to the field direction reduces the local
S0 (3) symmetry of7 R® into the localS O (2) = U (1) symmetry of M. The vectorses(x)
andey(x) are in fact determined up to the rotation

ei(x) — ei(x) cosy (x) — ex(x) siny (x)
ex(x) — ei(x) siny(x) + ex(x) cosy (x)

(6)

 This sub-bundle off R® may be identified with theplane bundleof Felsager and Leinaas [13]. See also the
related paper of Gliozzi [14].
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where x (x) is a point-dependent angle. This residual ambiguity will result in the gauge
freedom of our theory.

3.2. Magnetic line bundle geometry

We may now wonder how the vectors lying Wt are transported from point to point, that
is, whether the geometry of the magnetic line bundle is trivial or not. To this task we
proceed in two steps. Considering a vectofx) = w'e,(x), v = 1,2, in u,, we first
transport it from the pointc to the infinitesimally closest point + dz by means of the
Euclidean parallel transport dt and, second, we project it onto the plagmg, 4. (i) The
Euclidean parallel transport ab in « + dz may be immediately evaluated as

w(x + de) = w(x) — w'(e, - he;) dxle;

the Roman indices running over 2, 3, and the Greek indices over2 and where the sum
over repeated indices is implied The three quantitigse; - drez, e; - ez and ey - dres
characterize the flat parallel transport®t in the anholonomic frame. (It is in fact possible
to make them vanish by rotating the adapted frafegse,, e3} back to fixed directions in
every point.) (ii) The projection ontge, 4, then yields

w(z + dx)|, = w(x) — w(ey - dhe) dxkal‘ie,}

indicating that the parallel transport along the infinitesimal path conneatitg x + dx
produces the vectaw to be rotated by the infinitesimal angle &= (e; - de2) dx*. When
parallel transported along a finite closed patthe vector will therefore return to the starting
point rotated by the angle [13]

Oy = %(61 . 3k€2) dxk.
Y

As this quantity is in general different from zero, the geometry of the magnetic line bundle
is not flat. The operation of locally projecting onto the plangeduces the trivia O (3)

local symmetry of the theory to a non-trividlO (2) = U (1) local symmetry! This local
structure is described by a magnetic-likg1) gauge theory. The parallel transport of the
magnetic line bundle\, is in fact completely characterized by the vector

Ak =e- 3k62 (7)

which is theconnection 1-fornof M. A appears in the theory as a geometry-induced vector
potential (not to be confused with the vector potensiakpresenting the real magnetic field
b). A point-dependent redefinition of the local basis (x), ex(x)} plays the same role
of a gauge transformation. Under the rotation (6) the vector (7) transforms according
to Ay — Ai + dx. The associate geometry-induced magnetic fiBld = &g, Bin,
Bun = 9w A, — 9, A, thecurvature 2-formof M, may also be considered. It is obviously a
gauge-invariant quantity and, being the rotor of a vector field, satisfies the Bianchi identity
divB =0.

While the geometry-induced vector potentidl completely characterizes the intrinsic
geometry of the magnetic line bundlet, the other two quantities

Ly = ey - dres

®)

o = e+ Ores

1 This notation will be employed throughout the rest of this paper.
I The vectorse;, e; and ez being orthonormal in every point, e; - e; = §;;, these are the only independent
quantities.
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describing the flat parallel transport & in the anholonomic framées, ey, e}, takes

into account its extrinsic geometry. Since the curvature of the tangent biiitflés zero

the three quantities4, I, andl, are obviously not independent. They are related by the
equivalent of the Gauss, Codazzi-Mainardi and Ricci equations. The latter, as an example,
allows us to re-express the geometry-induced gauge Beddtirely in terms ofl; andl, as

B=Il,A1l (9)

whereBy; = (lylo; —1112;) /2, anda indicates the external product 8f [13]. With respect
to the point-dependent rotation (&) andl, transform as vectord( — I1 cosy — Iy siny,
l, — lysiny + I, cosy) making the gauge invariance 8 manifest.

3.3. Magnetic field lines geometry

Though the geometry of a magnetic field is completely characterized by two independent
functions (e.g. the two independent components of the real magneticbfietd of the
geometry-induced magnetic fiel8, etc) it may be useful to look at the problem from
different points of view. We may wonder, as an example, how the intrinsic/extrinsic
geometry of the line bundle\ is related to the geometry of magnetic field lines. To
this task we start by observing that the projection along the field direction of the two
vectorsly, I, may be identified with the twsecond fundamental fornmaf the embedding

of the magnetic field lines iR3 [15]. In every point of the space the curvatureof the
magnetic field line going through that point may therefore be expressed as

k=+(es-11)%+ (e3- 1n)2 (10)

In a similar way the projections along the field direction of the geometry-induced vector
potential A have to be identified with theaormal fundamental fornof the embedding of

the field lines inR? (i.e. with the connection form induced by the Euclidean geometry onto
the normal bundle of every field line) [15]. Up to the gradient of an arbitrary function—
representing again the freedom of arbitrarily rotating the reference frame in the normal
planes—in every point of the space the torsionf the magnetic field line going through
that point may be written as

T=e3-A (11)

Curvature and torsion completely characterize the geometry of every single magnetic field
line and contain, in principle, all the information relative to the geometry of our problem.
On the other hand we may also wonder about the global properties of the foliati®h of

in terms of field lines. Of particular relevance for the adiabatic motion of a particle in an
external magnetic field is the possibility of foliating space by means of surfaces everywhere
orthogonal to the field lines. By virtue of the Frobenius theorem this is controlled by the
vanishing of the scalaF = e - rotes. In terms of the magnetic line bundle geometry

.F:el'lz—EQ'll. (12)

The magnetic field lines torsiom and the Frobenius invariars® play a crucial role in
the description of the anholonomic effects appearing in the adiabatic motion of a charged
particle in a strong magnetic field.
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4. Adiabatic quantum variables

We are now ready for the construction of a set of adiabatic operators adapting to the different
time scale behaviours of a quantum particle in a strong, but otherwise arbitrary, magnetic
field. Let us consider therefore a s;:érparticle of mass:, chargee and gyromagnetic factor

g moving in space under the influence of tihbomogeneoumagnetic fieldB(x) = Bb(x),

the physical dimension of the field being again re-absorbed in the scale fac@enoting

by a an arbitrary choice of the vector potential, tot= b, the dynamics of the system is
described by the Pauli Hamiltonian

H/hwp = 3 + gbi(x)o; (13)

where the kinematical momenta;, = —ilzd; — a;(x)/lp have been introduced. The
inhomogeneity of the magnetic field makes Hamiltonian (13) dependent on the position
operatorse, explicitly through spin ternyb; (x)o; and implicitly through the commutation
relations of ther;s. In spite of the simple quadratic dependence of (13) on the kinematical
momenta,7; and s, are in fact no longer conjugate variables and neither commute with
w3 the set of operator§r;, x'; i = 1, 2, 3} fulfil the commutation relations

[7:, 7j] = ibij(z) [mi, x7] = —ilgs] [x',x/] =0 (14)

bij(x) = &by (x) denoting the skew-symmetric 2-form associated to the field. In the
lowest approximation we nevertheless expect the relevant degree of freedom of the system
to be taken into account by the two components of the particle’s velocity normal to the field.
Considering the position operatorss as adiabatic parameters driving the fast motion of the
system we expect, therefore, the rapid rotation of the particle around its guiding centre to be
separated from the slow and very slow motion by simply referring the kinematical momenta
to the adapted frames introduced in the previous section. For the sake of concreteness we
shall indicate byRr;’ (x) the point-dependent rotation bringing the fixed frafieq, 2} into

the adapted framée;(x), ex(x), e3(x)}. This allows us to decompose the fidige) in

terms of its normb = +/b- b and its directionb/b = R;/2; asb;(x) = b(z)R;’ (x)2;.

Once the rotation has been performed the kinematical momentum along the field direction
decouples, up to higher order terms in the adiabatic paranigteirom the other two
components. The commutator of these, on the other hand, is proportiobat o Stated

in a different way, in the adapted frame the particle sees an effective magnetic field of
constant direction and intensity(x). To make the velocity components normal to the
field in a couple of conjugate operators it is now sufficient to rescale them by the point-
dependent factob=Y2(z) (see [6]). We shall indicate by,’(x) the point-dependent
dilatation D;/ = diag(b'/?, b¥/?, 1) rescaling the first and second components of a vector
by /2 and leaving the third one unchanged.

In order to construct operators adapting tofdw time scale behaviour of the system two
point-dependent operations have to be performed: (i) a rot&jofx) to the local adapted
frame and (ii) a dilatationD;’ (x) rescaling the normal components of the kinematical
momenta. As the particle coordinates are not external parameters but dynamical variables
of the problem, these operations will produce higher order corrections in the various
commutators. We shall therefore proceed order by order in the adiabatic parambter
constructing sets of adiabatic operators fulfilling the desired commutation relation up to a
given order inz: at thenth order we shall look for a set of operatQBlf”), Xén); i=1,223}
fulfilling the conditions:

o MY, " are a couple of conjugate operators up to terms of afgler

o I1y”, X1, X2, X3 commute withI1{"”, T15" up to terms of ordet"
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¢ in the limit of a homogeneous field(x) — 2, the adiabatic kinematical momenta
Hf”)s and guiding centre operatovsin)s should reduce to the expressions (3) and (4)
respectively.

As our present task is to separate the fast degree of freedom from the slow and very slow
motion, we do not insist for the mome#t, ~I3” and X%, —X2, to be pairs of conjugate
operators as in the homogeneous case.

For computational proposes it is very convenient to use a compact notation which does
not distinguish among the physical unequivalent directions along and normal to the field.
This probably obscures for a while the physical contents of the various expression but
greatly simplifies formal manipulations. When necessary we will expand the notation in
order to shed light on the physics involved. For the moment we proceed in the opposite
direction by introducing the point-dependent matrix

B (@) = Dy (@) R;Y () (15)

representing the successive application of the two operations necessary to construct the
adapted kinematical momenta in the lowest order. This allows us to rewrite the skew-
symmetric 2-formb;; (x) in terms ofs;; = g3 (representing a homogeneous field directed
along z):

bij(@) = B @B @en. (16)

The matrixg;’ and this representation of the field are very useful in the construction of the
adiabatic quantum variables.

4.1. Zero-order operators

In order to construct the zero-order operators fulfilling the desired conditions up to terms
of orderlp it is sufficient to operate the rotation and the dilatation discussed above:

m? = {8, m} (17)

the matrixg;* being evaluated i o, = =. The anticommutatof, } is obviously introduced
in order to make thﬂfo)s Hermitian. A rapid computation confirms our deductions yielding
the commutation relations fulfilled by the zero-order adiabatic operators as

0 0 ; 1z
[Hl( ), HJ( )] = |8,‘J' - |§£ijh8hkl{/gkmrg1[’

[, Xfo)] = —ilsp’ (18)

[X{0) X(0] =0

n)

where I}/, = (8kﬁ,~"),3h‘lj and all the functions are evaluated X. 1‘[(10) and H(20> are
conjugate operators up 1©(/g). The commutators depend on the derivative of magnetic
field through the vector-valued matrix

(R A
Tl = A —3% —b 1y, (19)
Y21y, b2y, 0

allowing us to clearly distinguish the effects produced by a variation of the norm of

the magnetic field from that produced by a change of direction. The latter are entirely
geometrical in character as they are taken into account by the magnetic line bundle
connection formA and by the two extrinsic vectods and .
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4.2. First-order operators

Whereas the construction of the zero-order operators is in some way suggested by the
physics of the problem, a more technical effort is required for higher-order terms. The form
of the first-order guiding centre operators is nevertheless suggested by the corresponding
homogeneous expression (4),

i i I i
X =Xo+ gekl{ﬁk %) (20)

the matrixg;’ being again evaluated iX . We immediately obtain the new commutation
relation

Ip
2
[, X)) = —ils83Bs7 + OUs?) (21)
[Xisy, X}y] = —ils?M B B/ + OU5®)

0 —O)7 - ; hkl
[, H,(' N =ieij — i ene™ {B Ty

n2} + ous?

indicating theO(/3%) decoupling of the adiabatic guiding centre operators frlﬁ[ff and
n<2°>. All the functions are now evaluated iX ;). Though our analysis will be carried
out up toO(/z?), we also wrote the the first nonvanishing contribution to the commutators
among theXél)s, which is of ordeiz2. Even if it is unimportant for the present calculation,

it allows us to visualize the very slow time scale of the system.

The construction of the first-order kinematical momenta is performed by looking for
orderlp counterterms to be added to tﬁéo)s. These should be homogeneous second-order
polynomials in thel'[fo)s with coefficients depending oK ;). A rather tedious computation
produces

n® =0 + sk, 1], (M2, M 2)

where ™ = Jeet (28] + 5385)em™" + 5836k (8 + 838L)en e and all the functions
are evaluated inX(;). When expanded these expressions do not look as complicated as
at a first sight. We nevertheless insist on keeping this notation which greatly simplifies
the following manipulations. The commutation relations among the first-order adiabatic

variables are obtained as

l divb
@ @y _ B
(2. Y] = ey — i e {b

1
[, X)) = —il8:3Bs7 + OUs?)
[X{y), X{1)] = —ils%" B B/ + O(Us°).
It is very interesting to observe that a monopole singularity, that is a point of nonvanishing
divergence, represents an obstruction in the construction of the adiabatic operators. Being
concerned with real magnetic field we nevertheless assumte i@ and carry on in our
adiabatic analysis.1{" and Iy" are then conjugate operators commuting with all the

remaining variables up to terms of ordgrf and the fast degree of freedom decouples from
the slow and very slow motion up to terms of this order.

, n}l’} + 0%
(23)

4.3. A non-canonical set of operators

At least in principle it is possible to repeat this construction an arbitrary number of times
getting, as power series Ig, a set of adiabatic non-canonical operatdis, X’; i = 1, 2, 3}
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fulfilling the commutation relations
[T, T1;] = iey; [T, X7] = —ilp63R5Y (X, X/] = —il2"b RV R (24)

all the functions being now evaluated Xi. These formal series are in general—and have

to be [16]—not convergent, representing nevertheless a very useful tool in the discussion of
the adiabatic behaviour of the system. The description of the problem to a givemadrder

the adiabatic parametég requires the knowledge of the firgt+ 1 terms of the adiabatic
series, so that up to terms of ordgf we may identify thell;s andX’s with the Hfl)s

and Xél)s respectively. An outlook to the commutation relation (24) allows us to clearly
identify the dependence of the canonical structure on the variation of norm and direction
of the magnetic field. Whereas a suitable redefinition of reference framg&®allows

us to separate the fast degree of freedom from the others, the very slow variables are made
into a pair of non-conjugate operators by an inhomogeneous intensity. A variation of the
field direction even produces the mixing of very slow and slow variables. The description
of these by means of pairs of conjugate operators requires the introduction of curvilinear
coordinates in space [17], the so-calledler potentials[18]. We do not insist further on

this point, for the moment observing that under the actiolgfil, and T3, X!, X2, X3

the Hilbert space of the system separates into the direct sum of two subspaces describing
respectively the rapid rotation of the particle and the guiding centre motion.

5. Expanding the Hamiltonian

The adiabatic operatoild and X constructed in the previous section have been introduced

in such a way as to embody the expected features of the motion of a quantum charged
particle in a weakly inhomogeneous magnetic field. Their main advantage lies, in fact, in
the very suitable form assumed by the Pauli Hamiltonian when rewritten in terms of these
operators. To perform this task we first have to invert the power series expréssisd

X' in terms of the operators;s andx’s and, second, to replace these in (13). This yields
the Hamiltonian as a power series in the magnetic lefhgth

H = H(O) + IBH(l) + IBZH(Z) 4+ .. (25)

allowing the adiabatic separation of the fast degree of freedom from the slow/very
slow motion and the evaluation of approximate expressions of the spectrum and of the
wavefunctions of the system. In order to get the andx’s in terms of thdl;s andX’s we

first recall thatX’ = Xi; + O(l5%). By rewriting X', in terms of thell\”’s andX/y = x's,
equation (20),1‘[}0) in terms of ther;s andx’s (equation (17)), and by solving with respect

to x?, we then obtain:’ as a function of ther;s and theX’s, x! = x’ (s, X). This allows us

to rewrite Hfo) as a function of ther;s andX’s. Recalling finally thall; = l‘[,@ + 0>

and using (22) we immediately gé&l; in terms of ther;s andX’s, IT; = IT;(w, X). The
inversion of this relation, order by order ig, allows us to getr; andx’ in terms of the
adiabatic operators. The computation gives

m= 37 T+ S G (B BT ATk T + OU?) (26)
x' =X — 1" BiTI, + OUs?) (27)

where §m = 3878%em — 2¢fi™. As a useful check the commutation relations (14) may
be re-obtained by means of (24).
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The substitution of (26) and (27) in the Pauli Hamiltonian (13) yields immediately the
first two terms of the adiabatic expansion (25),

HO fhws = 3674 LTI + gbio; (28)
HO Jhewp = B4 BH cmn go T AT, T} — g B (dub)oi T, ... (29)

where the notationIT,I1,I1;} = II.I1,I1; + I, I1,I1; has been introduced. In order

to get some more physical insight into these expressions we now abandon our compact
notation in favour of a more transparent one. By recalling the definition (19 /af),
definition (19) of Ffj(a:) and the explicit expression of the inhomogeneous dilatation
D/ (x) = diagb¥?(x), b/%(x), 1), we rewrite everything in terms of the magnetic field
and of other quantities capable of a direct physical interpretation. The full expansion of the
zero-order Hamiltonian (28) gives

HO /hwg = 3113 + b[J + g(es - 0)] (30)

where J represents the harmonic oscillator Hamiltonian constructed by means of the
canonical variabled]; and ITp, J = (I11° + I1,%)/2. The norm of the magnetic field
b(X) is evaluated in the adiabatic guiding centre operafrsWe observe that while the
I[1,-T1, degree of freedom decouples to this order from the slow and very slow variables the
spin does not. The separation, up to higher-order terms, of the fast nijmi@tion+ spin)
requires in fact a subsidiary zero-order transformation which we will perform in the next
section. For the moment let us observe that, up to the spin term, the zero-order Hamiltonian
(30) precisely embodies the expected behaviour of the system: the canonical pair of
operatord1;—I1, takes into account thiast rotation of the particle around its guiding centre,
while the non-canonical variabld$;—X 2 describe the slow motion along the magnetic field
lines by means of an effective ‘kinetic energyotential energy’ Hamiltonian. The norm of
the magnetic field(X) plays the role of the effective potential. As long @¢/?) terms
are ignored the very slow dynamical variabl§$-X? appear only as adiabatic parameters
driving the slow motion, whereas a more accurate analysis indicates them as taking into
account the very slow drift in the directions normal to the field [6].

The full expression of the first-order Hamiltonian (29) appears more complicated. The
replacement of;/ (x) and I‘f‘j () by means of (15) and (19) yields in fact the expression

HY Jhop = —b"%" (e, - VD)[3J, + gles- 0)1,] — 30Y%(e, - A)J,
+5(e1-la—ex- 1) — (es- A)]JTIz+ 3(e1 - la+ ez - 1) (TT1® — T, Mg
—3(e1- 1y — ez - ) {ITy, Mp} I3 + b~ Y?[(e3 - o)1 — (e3 - 1) 1] M52
—gb"%e" (e, - L) (e - o) + (e, - o) (e2 - 0)]TI, (31)

indicating the first-order coupling among the various operators. The notdjor=
%aaﬂl‘lal‘lul‘[ﬁ has been introduced and all the functions are evaluateX.irAs expected

from dimensional consideratior’®® depends only on the first-order derivatives of the
field. It is nevertheless worthwhile to stress that the gradient of the magnetic-field-norm,
gradb = Vb, appears only in the first term of the right-hand side of this expression. All the
remaining terms depend only on the quantitidsl; andl, completely characterizing the
intrinsic/extrinsic geometry of the magnetic line bundié. To a large extent, therefore, the
complication of this expression is produced by the variation of direction of the magnetic field,
that is, by the nontrivial geometry of1. It is not yet time to comment on the structure

of H®. First of all, it is in fact necessary to operate a suitable unitary transformation
separating the zero-order fast motion from the other degrees of freedom, that is diagonalizing
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the the spin ternmes - . This will produce a modification of the first-order term of the
adiabatic expansion. Secondly, it is possible to drastically simplify the forrif by
operating a suitable first-order unitary transformation. The strategy is nothing but the
guantum equivalent of the so-callederaging transformatiorof classical mechanics and
sheds light on the physical content of (31).

6. Quantum averaging transformations

A well known strategy in dealing with the adiabatic separation of fast and slow variables in
classical mechanics consists in performing a series of successive canonical transformations
(the averaging transformatior)sseparating, order by order in some adiabatic parameter, the
rapid oscillation of the system from its slow averaged motion. As the analysis depends
essentially on the canonical structure of the problem, it generalizes immediately to quantum
mechanics, the canonical transformations being replaced by suitable unitary transformations.
The full adiabatic expansion describing the motion of a spin degree of freedom adiabatically
driven by external parameters has been obtained along these lines by Berry [16]. Littlejohn
and Weigert [4] employed the method in discussing the first adiabatic corrections to the
semiclassical motion of a neutral spinning particle in an inhomogeneous magnetic field. We
shall consider therefore a set of unitary operators

U™ = explilz"L£™} (32)

n=0,1,...such that fast and slow/very slow degrees of freedom separate @ 3t+1)

in the Hamiltonian obtained by the successive applicatiot/ 8f, U, ...,.U™. Whereas

in classical mechanics it is natural to consider the averaging transformation as defining new
canonical variables, in quantum mechanics it appears more convenient to keep the canonical
operators fixed and transform the Hamiltonian.

6.1. Zero-order transformation

The zero-order separation of the fast and slow/very slow motion requires the diagonalization
of the spin termgb(X) (e3(X)-o) of Hamiltonian (30). Denoting by;/ (x) the infinitesimal
generator of the rotatio®;/ () bringing the fixed framdz, §, 2} into the adapted frame
{er(x), e2(x), e3(@)}, R/ = (€)) = 8] + pi/ + p*pi’ + -+, the aim is achieved by
choosing

L0 = 36" pi(X)on (33)
the matrixp;; = p;/ being evaluated in the guiding centre operatdfs Because of the
commutation relations (24) the operaféf® commutes with1y, I, and therefore with/.
It produces?O(/) terms when commuting withlz andO (/%) terms when commuting with
functions of X.. In evaluating the new Hamiltoniah’ = UOHU© = H©' 11, ' 1. ..

up to terms of ordetz? we have only to worry about the action 6% on o andI1s. A
very rapid computation yields the transformation rule

U@ - a’)U(O)T =0, + O(3% (34)

while the action o/ © onTlz, UQTI;U©" = M34+U @[5, U], may be easily evaluated
by computing the commutator in the original set of operatgssandx’s and transforming
back to adiabatic variables

UOTIUOT = T3 + Ip(es - l)or — Ip(es - 1)o + Ip(es - Aoz + Ol52). (35)



2176 P Maraner

SubjectingH© andH® to the zero-order averaging transformatiGf? and by using (34)
and (35) we obtain the new adiabatic expansion

H hwp = JT15° + b(J + go3) (36)
HY Jhwg = —b~"2e" (e, - Vb) (2, + go3ll,) — 2bY%(e,, - A)J,
+[3(e1-l2— ez 1) J — (€3 A)(J — 03)]TT3
+3(e1-lo+ e+ 1)(I4% — )5 — 3(e1 - Iy — ez - Ip){Iy, To}T3
+b7Y?[(e3 - 12)TT1 — (es - 1)) T15° + [(e3 - l2)o1 — (e3 - 11)o2] T3
—gbY2e" (e, - l)o1 + (e, - L)oa] T, . . .. (37)

All the functions are evaluated iX. The fast and slow/very slow motions are separated
in this way in the zero-order term of the adiabatic expansion but not in the first-order term.

6.2. First-order transformation

The application of the first-order averaging transformatio® to 7’ produces the new
HamiltonianH” = UVH UDT = HO' 415 (HY' +i[£D, HO'])+- ... Itis then possible

to simplify the first-order term of the adiabatic expansion by choogifiyin such a way
that its commutator witt{©' cancels as many terms &’ as possible. The analysis

of the commutation relation involved and a little thought indicates that it is possible to
annihilate all but the third term of (37) by choosing

ro _b—3/2(eu . Vb)(%"u + gosll,) + %b_l/zew(eu -A)J,
—gbHer I+ e - 1)y, M2} Mlg — gb~ (e1 - la — €2 - 1) (Th? — T3
—b=*P[(e3 - 1)z + (e3 - W] + g *b (€3 - L2)o2 + (e3 - l)o] T

+L4b—3/2[(eu 2 11) (2018 — goaeh”) — (e, - 12)(2028"" + gore)]TI,.

g2 —
(38)

The commutators of the zero-order Hamiltonian (36) with the various terng*ofyields

the terms of (37) times the imaginary factor i, in such a way that they cancel in the new
adiabatic expansion. To this are subjected all the terms but the third. It is in fact clear that
no operator may be found in such a way that its commutator with (36) produces a term
proportional toJ 13 andoslls. The third term of (37) may therefore not be removed from

the adiabatic expansion representing the real first-order coupling among fast and slow/very
slow motions and not a complication produced by a wrong choice of variables. Its relevance
in the context of the classical guiding centre motion has been first recognized by Littlejohn
[1]. It is therefore not a surprise to rediscover it in the discussion of the quantum guiding
centre dynamics. The quantum averaging method therefore produces the adiabatic expansion

HO" — 1O (39)
HY [hop =[Ler-lo—ex-1)J — (e3+ A(J — 09)]Ms.... (40)
We observe that whereas the zero-order terms (36) depend only on the magnetic-field-norm

b (other than on the commutation relations (24)) the first-order term (40) is completely
characterized by the Frobenius invariant (12), and by the magnetic field lines torsion (11).
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7. Quantum guiding centre dynamics and magnetic-induced geometric-magnetism

The construction of a suitable set of non-canonical operators embodying the classically
expected features of the motion of a charged particle in an inhomogeneous magnetic field
and the quantum averaging method allow us to rewrite the Pauli Hamiltonian (13) in such
a way that the fast degrees of freedom separate (up to terms ofigfidrom the guiding
centre dynamics. The transformation to the adiabatic operdlgss X's, (20) and (22),

and the application of the zero- and first-order quantum averaging operators, (33) and (38),
produces in fact the Hamiltonian

H/hwp = 3T15% + b(J + goz) — Ip[t(J — 03) — SF I+ OUs?). (41)

Disregarding terms of order higher thdp the operators/—representing the magnetic
moment of gyration of the particle—ang are constants of motion of the system. Frozen
the particle in one of its/ and o3 eigenstates Hamiltonian (41) describes therefore the
corresponding guiding centre dynamics. As long’y$;2) are ignoredX® and X2 appear

as non-dynamical external adiabatic parameters and onlyItael® degree of freedom,
representing in the classical limit the drift of the particle along the magnetic field lines,
is dynamically relevant. To this order, therefore, the quantum guiding centre dynamics
is described by a one-degree-of-freedom Hamiltonian given by the sum of the kinetic
energy I[152/2 and of an effective potential proportional #X). As Il3 is a slow
variable, that is of the same magnitude of the first adiabatic correction, the igrdemm

[t(J —o3) — FJ/2]113 may be identified with a magnetic-like interaction and re-absorbed
in the zero-order Hamiltonian as a gauge potential. The guiding centre Hamiltonian can be
rewritten in this way in the familiar form

H/hwp = 5Tz — [5A(X))* + V(X) + O (42)
with
J
AX) = (J = 09)7(X) = S F(X) (43)
V(X) = (J + go3)b(X). (44)

As it might be expected from the general discussion of section 3 the magnetic field line
torsiont = e3 - A appears as (a part of) a gauge potential in the effective slow dynamics,
taking into account the anholonomy produced by the non-trivial parallel transport of the
magnetic line bundleM. Perhaps unexpected, at least form this point of view, is the
contribution given by the Frobenius invariant. Let us in fact compare the guiding centre
motion of a charged particle along a magnetic field line with the propagation of light in

a coiled optical fibre [19] or with the motion of an electron constrained on a twisted line
[20]. In both cases—sharing the same mathematical background—the adiabatic dynamics
is coupled with an effective vector potential proportional to the torsion of the optical
fiber or of the twisted line. The analogous contribution appears in the guiding centre
motion, (J — o03)7(X), but it is not the whole story. The particle not being homogeneously
constrained in the neighbourhood of a line, it sensibly results in the variation of the geometry
in the magnetic field lines surrounding the one on which the guiding centre is located. If
all the field lines had the same geometry, the foliationRéfin terms of them would be
trivial, the Frobenius invariant zero and the situation analogous the examples above. The
geometry of this foliation is in general non-trivial as it yields a further contribution to the
gauge potentiald(X) proportional to the Frobenius invariant,F(X)/2. It is obviously

not possible, in the general case, to remove the gauge potential (43) by means of a suitable
choice of gauge.
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In order to make the identification of (42) with a one-degree-of-freedom Hamiltonian
(two, if we want to consideX?, X2 as dynamical) complete, it is necessary to replace the
I1;s, X's by a set of canonical operators. The task is achieved by introducing a Darboux

coordinate framex= x(z), i = 1, 2, 3, bringing the closed skew-symmetric 2-fotm(x)
in the canonical form,
xk ox!
b () — =g 45
e () ox o = G (45)

(xX(x), x3(x) may be identified with a pair of Euler potentials [18] for the magnetic field
b(x), VX' AVx? = b, while x*(x) with the arc length of the magnetic field lines). Defining

X' =x(X), i = 1,2,3 we get the canonical commutation relatiom$;[X'] = —ilz85

and [X, X/] = —ilz%¢" allowing the identification of the operators describing the slow and
the very slow degrees of freedom. It is in principle possible to start from the beginning
by introducing such curvilinear coordinates R¥ and working out the problem by using

a canonical set of operators [17] Nevertheless, whereas the existence of a Darboux
coordinate frame is always guaranteed by the Darboux theorem, it is hardly ever possible
to find it explicitly and to proceed to the construction of thesXFor this reason—though
theI1;s, X's appear as the most natural variables for the problem—the explicit construction
of a set of non-canonical operators appears a better strategy.

8. Conclusions

The main difficulty in addressing the separation of fast and slow degrees of freedom in the
study of an adiabatic system consist generally in finding out a suitable set of variables
adapting with sufficient accuracy to the different time scale behaviours of the system.
Starting from the homogeneous case and the canonical commutation relations (5) we showed
how the analysis of the canonical structure of a charged spinning particle moving in an
external inhomogeneous magnetic field leads naturally to the construction—as power series
in the magnetic lengthz—of a suitable set of non-canonical operators. This allows us to
systematically take into account the coupling between spatial and spin degrees of freedom.
The new variables fulfil the very compact commutation relations (24) clearly displaying the
dependence of the canonical structure on the norm and direction of the external magnetic
field. In terms of the new operators the Pauli Hamiltonian can be rewritten as a power
series in the adiabatic parametgrwhich may be brought into a particular simple form by
operating suitable unitary transformations. In this way thet degree of freedom of the
system is separated from the remaining degrees of freedom up to terms oﬁ@rdﬁne
resulting effective guiding centre dynamics displays geometric-magnetism: (i) the coupling
with the geometry induced gauge potential (43), depending on the magnetic field lines
torsion (11) and on the Frobenius invariant (12), (ii) the coupling with the scalar potential
(44), proportional to the magnetic field norm. This completely extends to the quantum
domain the previous classical treatments of the problem showing that the anholonomy first
studied by Littlejohn in the classical guiding centre theory plays an equivalent role in the
discussion of the quantum problem. It is a feature of the canonical structure of the system,
after all. The geometrical mechanism responsible for the appearance of induced gauge
structures has also been analysed in some detail and formalized in the geometry of the
magnetic line bundleM.

t The introduction of Darboux coordinate produces automatically the framirig, 8f by means of an adapted
frame {e1(x), ea(x), e3(x)}. Our method, on the other hand, consists in adapting the frante, BF without
introducing the curvilinear coordinates.
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In conclusion we observe that our discussion gives the solution of only half of the
problem. The guiding centre dynamics is still characterized by the presenciastfand a
slow time scale(slow — fast very slow— slow) and is therefore amenable to a treatment
by means of adiabatic techniques. Nevertheless, the remaining problem is not of such a
deep geometrical nature as the original one.
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