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Abstract. A quantal guiding centre theoryis presented which allows a systematical study
of the separation of the different time scale behaviours of a quantum charged spinning particle
moving in an external inhomogeneous magnetic field. A suitable set of operators adapting to the
canonical structure of the problem and generalizing the kinematical momenta and guiding centre
operators of a particle coupled to a homogeneous magnetic field is constructed. This allows us
to rewrite the Pauli Hamiltonian as a power series in the magnetic lengthlB =

√
h̄c/eB making

the problem amenable to a perturbative analysis. The first two terms of the series are explicitly
constructed. The effective adiabatic dynamics turns out to be in coupling with a gauge field
and a scalar potential. The mechanism producing such magnetic-induced geometric-magnetism
is investigated in some detail.

1. Introduction

The motion of a charged particle in a strong inhomogeneous magnetic field is a nontrivial
problem displaying a variety of very interesting phenomena ranging from chaos to phase
anholonomy. Being of utmost importance in plasma physics, especially in the study of
magnetic confinement, the subject has been worked out in great detail in classical mechanics
with special attention to phenomenological implications as well as to formal aspects. The
canonical structure of the problem, in particular, has been deeply investigated only relatively
recently time by Littlejohn [1], revealing the appearance of geometry induced gauge
structures in the adiabatic motion of classical charged particles. Very little, on the other
hand, is known about the behaviour of quantum particles in strong inhomogeneous magnetic
fields. The reason is essentially that the techniques developed for classical mechanics
do not easily generalize to the quantum context. Some work has been done for neutral
spinning particles by Berry [2], Aharonov and Stern [3] and Littlejohn and Weigert [4] in
connection with geometrical phases, whereas a quantum treatment for charged spinning
particles is still missing. It is the purpose of this paper to present aquantal guiding
centre theorywhere the coupling between the spin and spatial degrees of freedom of a
quantum charged spinning particle moving in a strong inhomogeneous magnetic field is
systematically taken into account. This allows us to extend to the quantum domain the
previous classical results. Our treatment, algebraic in nature, is a re-elaboration and a
simplification of the technique originally proposed by Littlejohn in classical mechanics. It
is based on a different choice of non-canonical variables adapting to classical as well as
quantum mechanics. Depending essentially on the canonical structure the method applies
indistinctly to both theories. Nevertheless, focus on the quantum problem.
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Figure 1. Different time scale behaviours of a charged particle in a strong magnetic field:
(a) fast rotation of the particle andslow guiding centre drift in a homogeneous field; (b) in the
inhomogeneous case the guiding centre drifts away from the field linevery slowly.

In order to better understand the strong-field regime of a quantum particle moving in
an external magnetic field it is helpful to have in mind the main features of the equivalent
classical problem [5]. Let us therefore consider a classical particle of massm and chargee
moving in a homogeneous magnetic field of strengthB. As is well known the trajectory of
the particle is represented by a helix wrapping around a field line, as sketched in figure 1(a)
the particle performs a uniform circular motion of frequencyωB = eB/mc and radius
rB = mc|v⊥|/eB (|v⊥| is the norm of the normal component of the velocity) in the directions
normal to the field, while the centre of the orbit, called theguiding centre, moves freely
along a field line. Keeping fixed the initial condition, the stronger the magnetic field the
faster the rotation of the particle when compared with the drift along the field direction
and the smaller the portion of space explored by the particle around the field line. This
indicates the presence of different time scales in the dynamics of the system and gives the
reason why the motion in a very strong magnetic field may be studied along the same lines
as that in a weakly inhomogeneous one. Let us introduce now a small inhomogeneity in
the field. The picture of the motion should not change substantially. The particle keeps on
rotating around its guiding centre while the frequency and the radius now weakly depend
on the position. The guiding centre still drifts along a field line. In this case, however, the
guiding centre does not remain exactly on a single field line. It starts drifting very slowly in
the direction normal to the field. Three different time scale behaviours of the system may
therefore be distinguished: thefast rotation of the particle around the guiding centre, the
slow drift of the guiding centre along a magnetic field line and thevery slow drift of the
guiding centre in the direction normal to the field. The situation is sketched in figure 1(b).
For stronger magnetic fields the separation of these three degrees of freedom becomes more
clear.

An outlook to the canonical structure of the homogeneous case immediately makes
clear how the introduction of kinematical momenta and guiding centre operators allows
the description of these three degrees of freedom. This is briefly reported in section 2
where the relevant notations of the paper are also set up. After discussing the geometrical
complications involved in the adiabatic motion of a charged particle in an inhomogeneous
magnetic field, section 3, an appropriate set of non-canonical operators generalizing the
one used in the discussion of the homogeneous problem is constructed in section 4. These
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are obtained as formal power series in the magnetic lengthlB =
√
h̄c/eB, which appears

naturally as the adiabatic parameter of the theory. The Pauli Hamiltonian describing the
motion of the particle is then rewritten in terms of the new adiabatic operators in sections 5
and 6, whereas the anholonomic effects appearing in the adiabatic separation of the fast and
slow/very slow degrees of freedom are discussed in section 7. Our results are summarized
in equations (42), (43) and (44). In the classical limit these reproduce correctly the classical
theory. Section 8 contains our conclusions.

2. Canonical structure of the guiding centre motion

Magnetic interactions appear essentially as modifications of the canonical structure of a
dynamical system. It is worthwhile to start by briefly discussing this peculiarity in the
elementary case of a quantum charged spinning particle in a homogeneous magnetic field.
This allows us to immediately focus on the heart of the problem establishing at the same
time terminology and notations. We consider, therefore, a spin-1

2 particle of massm, charge
e and gyromagnetic factorg moving in space under the influence of thehomogeneous
field B(x) = Bẑ. As in the inhomogeneous case, to be discussed later on, the physical
dimension of the magnetic field is reabsorbed in the scale factorB. B−1/2, appropriately
rescaled, will play the role of the adiabatic parameter of our theory. Introducing an arbitrary
choice of the vector potentiala for the dimensionless fieldB(x)/B, rota = ẑ, the motion
of the particle is described by the Pauli Hamiltonian

H = 1

2m

(
−ih̄∇− eB

c
a

)2

+ g h̄eB
mc

ẑ · σ (1)

∇ = (∂x, ∂y, ∂z) denoting the gradient operator andσ = (σx, σy, σz) the matrix-valued
vector constructed by means of the three Pauli matrices. As is well known the solution of
this simple problem was first obtained by Landau at the beginning of the thirties and leads
naturally to replace the standard set of canonical operatorspi = −ih̄∂i , xi , i = 1, 2, 3,
by the gauge invariantkinematical momentaπi = pi − (eB/c)ai and theguiding centre
operatorsXi = xi + (c/eB)εijπj . A straightforward computation yields the nonvanishing
commutation relation among the new variables

[π2, π1] = −i
h̄eB

c
[π3, X

3] = −ih̄ [X1, X2] = −i
h̄c

eB
(2)

indicating π2–π1, π3–X3 andX1–X2 as couples of conjugates variables. Moreover, the
scale dependence of the commutators (2) allows us to identify the three pairs of operators
as describing respectively thefast, the slow and thevery slow degrees of freedom of the
system (see e.g. [6]). In terms of the new gauge invariant operators Hamiltonian (1) can
be rewritten in the very simple formH = (π1

2 + π2
2 + π3

2)/2m + gh̄eBσ3/mc. The
harmonic oscillator term(π1

2+π2
2)/2m takes into account the rapid rotation of the particle

around its guiding centre. The free termπ3
2/2m produces the slow drift of the guiding

centre along the straight magnetic field lines. As the very slow variablesX1 andX2 are
constants of motion, the guiding centre does not move in the directions normal to the field.
Let us stress that in the canonical formalism the spatial rotation of the particle around its
guiding centre is taken into account by the phase space trajectory of a couple of conjugate
variables: the particle’s velocity componentsπ1 andπ2 in the directions normal to the field.
The presence of an external magnetic field therefore produces a rotation of the canonical
structure, mixing up spatial coordinates and canonical momenta in new canonical operators
adapting to the different time scale behaviours of the particle! In section 4 we will construct
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such ‘adapted operators’—as power series in the adiabatic parameter—for the motion of a
quantum charged spinning particle in an arbitrary magnetic field. This allows the extension
of the Hamiltonian approach developed by Littlejohn [1] to quantum mechanics. The case
of a magnetic field with constant direction has been previously considered in [6]. Some
preparatory material is, however, necessary.

First of all it is convenient to introduce dimensionless quantities by factorizing the energy
scaleh̄ωB , ωB = eB/mc, from the Hamiltonian. This leads one to redefine kinematical
momenta and guiding centre operators as

πi = −ilB∂i − lB−1ai(x) (3)

Xi = xi + lBεijπj (4)

lB =
√
h̄c/eB being themagnetic length. The relevant commutation relations may then be

recast in the compact and very convenient form

[πi, πj ] = iεij

[σi, σj ] = iεijkσk

}
fast

[πi,X
j ] = −ilBδ

3
i δ
j

3 slow

[Xi,Xj ] = −ilB
2εij very slow

(5)

where the spin variables have also been considered.
A second and more serious task is the discussion of the geometrical structure responsible

for the anholonomic effects appearing in the adiabatic motion in a strong magnetic field.

3. Magnetism and geometric-magnetism

The beautiful analysis of the adiabatic separation offast andslow degrees of freedom in a
quantum system proposed by Berry [7], Kuratsuji and Iida [8], Moodyet al [9], Jackiw [10]
and others, has pointed out that in lowest order the reaction of the fast to the slow dynamics
is through a geometry-induced gauge structure resembling that of (electro-) magnetism.
This phenomenon has been identified and found to be important in a variety of physical
contexts [11] and has been recently referred to by Berry and Robbins [12] asgeometric-
magnetism. A rather curious fact, first pointed out by Littlejohn [1] in a series of papers on
the canonical structure of classical guiding centre motion, is that, in some circumstances,
magnetism itself may generate geometric-magnetism. The aim of the present section is to
discuss the geometry involved in such ‘magnetic-induced geometric-magnetism’.

It is useful to begin by briefly recalling the geometrical character of the kinematical
quantities characterizing the motion of a particle in space. This will lead to a rather intuitive
picture of the geometrical structure involved in the adiabatic motion of a charged spinning
particle in a strong magnetic field, allowing us at the same time to frame it in a general
and rigorous context. The state of a particle moving in space is completely characterized
by its positionx and its velocityv, i.e. by a point in thetangent bundleT R3 of the
three-dimensional Euclidean spaceR3. The flat parallel transport ofR3 makes it natural to
parameterize every fibreTxR3 of the bundle by means of a fixed reference frame inR3,
that is, to identify the tangent space in every pointx with the physical space itself. Such
an identification is certainly very useful in most circumstances, but it is just a convention.
In principle we are free to choose arbitrarily the frame ofTxR

3 in everyx. The parallel
transport—and not the way we describe it—is all that matters. This freedom of arbitrarily
rotating the reference frame of the tangent space in every pointx consists a localSO(3)
symmetry and plays a crucial role in what follows. To visualize the situation, therefore, we
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Figure 2. Framing the tangent bundleT R3 of the physical space: (a) by means of a single fixed
frame inR3; (b) by using local reference frames adapting to the magnetic field lines geometry.

shall picture the Euclidean space as filled up with orthonormal reference frames. To start
with, we can imagine all of them as being combed parallel to a single fixed frame{x̂, ŷ, ẑ}
in R3 (see figure 2(a)), but this is not always the best choice even for the flat case.

3.1. The magnetic line bundle

As qualitatively sketched above, the motion of a charged spinning particle in a strong
magnetic field is characterized by the separation of time scales in the three degrees of
freedom, making the system amenable to a perturbative analysis. In the lowest order of
approximation the particle performs afast rotation in the plane normal to the field line
at which its guiding centre is located. This is taken into account by the two components
normal to the field of the particle’s velocity (to this order a couple of conjugate variables).
Disregarding theslow drift of the guiding centre along the field line and thevery slow
motion, the velocity of a particle whose guiding centre is located inx, is effectively
constrained to the planeµx generated by the vectors normal to the field inx. In every point
of the space the magnetic fieldb(x) picks the complex lineµx out of the tangent space
TxR

3, reducing thetangent bundleT R3 to a complex line bundle, hereafter themagnetic
line bundleM†. It is then natural to use the localSO(3) symmetry of the theory to adapt
the parameterization ofT R3 to the sub-bundleM by combing, say, thêz direction of the
frame of everyTxR3 according to the direction of the field. We so smoothly introduce
point-dependent adapted reference frames{e1, e2, e3} in such a way that in every pointx
the vectorse1(x), e2(x) generateµx while e3(x) is aligned withb(x) (see figure 2(b)).
Such reference frames are commonly used in the discussion of geometrically non-trivial
physical problems such as in general relativity and are referred to asanholonomic frames.
It is worthwhile to note that fixinge3 according to the field direction reduces the local
SO(3) symmetry ofT R3 into the localSO(2) ≡ U(1) symmetry ofM. The vectorse1(x)
ande2(x) are in fact determined up to the rotation

e1(x)→ e1(x) cosχ(x)− e2(x) sinχ(x)

e2(x)→ e1(x) sinχ(x)+ e2(x) cosχ(x)
(6)

† This sub-bundle ofT R3 may be identified with theplane bundleof Felsager and Leinaas [13]. See also the
related paper of Gliozzi [14].
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whereχ(x) is a point-dependent angle. This residual ambiguity will result in the gauge
freedom of our theory.

3.2. Magnetic line bundle geometry

We may now wonder how the vectors lying inM are transported from point to point, that
is, whether the geometry of the magnetic line bundle is trivial or not. To this task we
proceed in two steps. Considering a vectorw(x) = wνeν(x), ν = 1, 2, in µx, we first
transport it from the pointx to the infinitesimally closest pointx + dx by means of the
Euclidean parallel transport ofR3 and, second, we project it onto the planeµx+dx. (i) The
Euclidean parallel transport ofw in x+ dx may be immediately evaluated as

w(x+ dx) = w(x)− wν(eν · ∂kei ) dxkei

the Roman indices running over 1, 2, 3, and the Greek indices over 1, 2 and where the sum
over repeated indices is implied†. The three quantities‡ e1 · ∂ke2, e1 · ∂ke3 ande2 · ∂ke3

characterize the flat parallel transport ofR3 in the anholonomic frame. (It is in fact possible
to make them vanish by rotating the adapted frames{e1, e2, e3} back to fixed directions in
every point.) (ii) The projection ontoµx+dx then yields

w(x+ dx)|µ = w(x)− wµ(e1 · ∂ke2) dxkενµeν

indicating that the parallel transport along the infinitesimal path connectingx to x + dx
produces the vectorw to be rotated by the infinitesimal angle dα = (e1 · ∂ke2) dxk. When
parallel transported along a finite closed pathγ the vector will therefore return to the starting
point rotated by the angle [13]

αγ =
∮
γ

(e1 · ∂ke2) dxk.

As this quantity is in general different from zero, the geometry of the magnetic line bundle
is not flat. The operation of locally projecting onto the planeµ reduces the trivialSO(3)
local symmetry of the theory to a non-trivialSO(2) ≡ U(1) local symmetry! This local
structure is described by a magnetic-likeU(1) gauge theory. The parallel transport of the
magnetic line bundleM, is in fact completely characterized by the vector

Ak = e1 · ∂ke2 (7)

which is theconnection 1-formofM. A appears in the theory as a geometry-induced vector
potential (not to be confused with the vector potentiala representing the real magnetic field
b). A point-dependent redefinition of the local basis{e1(x), e2(x)} plays the same role
of a gauge transformation. Under the rotation (6) the vector (7) transforms according
to Ak → Ak + ∂kχ . The associate geometry-induced magnetic fieldBk = εkmnBmn,
Bmn = ∂mAn−∂nAm, thecurvature 2-formofM, may also be considered. It is obviously a
gauge-invariant quantity and, being the rotor of a vector field, satisfies the Bianchi identity
divB = 0.

While the geometry-induced vector potentialA completely characterizes the intrinsic
geometry of the magnetic line bundleM, the other two quantities

l1k = e1 · ∂ke3

l2k = e2 · ∂ke3
(8)

† This notation will be employed throughout the rest of this paper.
‡ The vectorse1, e2 ande3 being orthonormal in every pointx, ei · ej = δij , these are the only independent
quantities.
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describing the flat parallel transport ofR3 in the anholonomic frame{e1, e2, e3}, takes
into account its extrinsic geometry. Since the curvature of the tangent bundleT R3 is zero
the three quantitiesA, l1 and l2 are obviously not independent. They are related by the
equivalent of the Gauss, Codazzi-Mainardi and Ricci equations. The latter, as an example,
allows us to re-express the geometry-induced gauge fieldB entirely in terms ofl1 andl2 as

B = l1 ∧ l2 (9)

whereBkl = (l1kl2l−l1l l2k)/2, and∧ indicates the external product ofR3 [13]. With respect
to the point-dependent rotation (6)l1 and l2 transform as vectors (l1→ l1 cosχ − l2 sinχ ,
l2→ l1 sinχ + l2 cosχ ) making the gauge invariance ofB manifest.

3.3. Magnetic field lines geometry

Though the geometry of a magnetic field is completely characterized by two independent
functions (e.g. the two independent components of the real magnetic fieldb, or of the
geometry-induced magnetic fieldB, etc) it may be useful to look at the problem from
different points of view. We may wonder, as an example, how the intrinsic/extrinsic
geometry of the line bundleM is related to the geometry of magnetic field lines. To
this task we start by observing that the projection along the field direction of the two
vectorsl1, l2 may be identified with the twosecond fundamental formsof the embedding
of the magnetic field lines inR3 [15]. In every point of the space the curvaturek of the
magnetic field line going through that point may therefore be expressed as

k =
√
(e3 · l1)2+ (e3 · l2)2. (10)

In a similar way the projections along the field direction of the geometry-induced vector
potentialA have to be identified with thenormal fundamental formof the embedding of
the field lines inR3 (i.e. with the connection form induced by the Euclidean geometry onto
the normal bundle of every field line) [15]. Up to the gradient of an arbitrary function—
representing again the freedom of arbitrarily rotating the reference frame in the normal
planes—in every point of the space the torsionτ of the magnetic field line going through
that point may be written as

τ = e3 · A. (11)

Curvature and torsion completely characterize the geometry of every single magnetic field
line and contain, in principle, all the information relative to the geometry of our problem.
On the other hand we may also wonder about the global properties of the foliation ofR3

in terms of field lines. Of particular relevance for the adiabatic motion of a particle in an
external magnetic field is the possibility of foliating space by means of surfaces everywhere
orthogonal to the field lines. By virtue of the Frobenius theorem this is controlled by the
vanishing of the scalarF = e3 · rote3. In terms of the magnetic line bundle geometry

F = e1 · l2− e2 · l1. (12)

The magnetic field lines torsionτ and the Frobenius invariantF play a crucial role in
the description of the anholonomic effects appearing in the adiabatic motion of a charged
particle in a strong magnetic field.
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4. Adiabatic quantum variables

We are now ready for the construction of a set of adiabatic operators adapting to the different
time scale behaviours of a quantum particle in a strong, but otherwise arbitrary, magnetic
field. Let us consider therefore a spin-1

2 particle of massm, chargee and gyromagnetic factor
g moving in space under the influence of theinhomogeneousmagnetic fieldB(x) = Bb(x),
the physical dimension of the field being again re-absorbed in the scale factorB. Denoting
by a an arbitrary choice of the vector potential, rota = b, the dynamics of the system is
described by the Pauli Hamiltonian

H/h̄ωB = 1
2πiπi + gbi(x)σi (13)

where the kinematical momentaπi = −ilB∂i − ai(x)/lB have been introduced. The
inhomogeneity of the magnetic field makes Hamiltonian (13) dependent on the position
operatorsx, explicitly through spin termgbi(x)σi and implicitly through the commutation
relations of theπis. In spite of the simple quadratic dependence of (13) on the kinematical
momenta,π1 andπ2 are in fact no longer conjugate variables and neither commute with
π3: the set of operators{πi, xi; i = 1, 2, 3} fulfil the commutation relations

[πi, πj ] = ibij (x) [πi, xj ] = −ilBδ
j

i [xi, xj ] = 0 (14)

bij (x) = εijkbk(x) denoting the skew-symmetric 2-form associated to the field. In the
lowest approximation we nevertheless expect the relevant degree of freedom of the system
to be taken into account by the two components of the particle’s velocity normal to the field.
Considering the position operatorsxis as adiabatic parameters driving the fast motion of the
system we expect, therefore, the rapid rotation of the particle around its guiding centre to be
separated from the slow and very slow motion by simply referring the kinematical momenta
to the adapted frames introduced in the previous section. For the sake of concreteness we
shall indicate byRij (x) the point-dependent rotation bringing the fixed frame{x̂, ŷ, ẑ} into
the adapted frame{e1(x), e2(x), e3(x)}. This allows us to decompose the fieldb(x) in
terms of its normb = √b · b and its directionb/b = Ri

j ẑj as bi(x) = b(x)Ri
j (x)ẑj .

Once the rotation has been performed the kinematical momentum along the field direction
decouples, up to higher order terms in the adiabatic parameterlB , from the other two
components. The commutator of these, on the other hand, is proportional tob(x). Stated
in a different way, in the adapted frame the particle sees an effective magnetic field of
constant direction and intensityb(x). To make the velocity components normal to the
field in a couple of conjugate operators it is now sufficient to rescale them by the point-
dependent factorb−1/2(x) (see [6]). We shall indicate byDi

j (x) the point-dependent
dilatationDi

j = diag(b1/2, b1/2, 1) rescaling the first and second components of a vector
by b1/2 and leaving the third one unchanged.

In order to construct operators adapting to thefast time scale behaviour of the system two
point-dependent operations have to be performed: (i) a rotationRi

j (x) to the local adapted
frame and (ii) a dilatationDi

j (x) rescaling the normal components of the kinematical
momenta. As the particle coordinates are not external parameters but dynamical variables
of the problem, these operations will produce higher order corrections in the various
commutators. We shall therefore proceed order by order in the adiabatic parameterlB by
constructing sets of adiabatic operators fulfilling the desired commutation relation up to a
given order inlB : at thenth order we shall look for a set of operators{5(n)

i , X
i
(n); i = 1, 2, 3}

fulfilling the conditions:
• 5(n)

1 , 5(n)

2 are a couple of conjugate operators up to terms of orderlB
n

• 5(n)

3 , X1
(n), X

2
(n), X

3
(n) commute with5(n)

1 , 5(n)

2 up to terms of orderlBn
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• in the limit of a homogeneous field,b(x) → ẑ, the adiabatic kinematical momenta
5
(n)
i s and guiding centre operatorsXi(n)s should reduce to the expressions (3) and (4)

respectively.
As our present task is to separate the fast degree of freedom from the slow and very slow

motion, we do not insist for the momentX3
(n)–5

(n)

3 andX1
(n)–X

2
(n) to be pairs of conjugate

operators as in the homogeneous case.
For computational proposes it is very convenient to use a compact notation which does

not distinguish among the physical unequivalent directions along and normal to the field.
This probably obscures for a while the physical contents of the various expression but
greatly simplifies formal manipulations. When necessary we will expand the notation in
order to shed light on the physics involved. For the moment we proceed in the opposite
direction by introducing the point-dependent matrix

βi
j (x) = D−1

i

k
(x)R−1

k

j
(x) (15)

representing the successive application of the two operations necessary to construct the
adapted kinematical momenta in the lowest order. This allows us to rewrite the skew-
symmetric 2-formbij (x) in terms ofεkl = εkl3 (representing a homogeneous field directed
alongz):

bij (x) = β−1
i

k
(x)β−1

j

l
(x)εkl . (16)

The matrixβij and this representation of the field are very useful in the construction of the
adiabatic quantum variables.

4.1. Zero-order operators

In order to construct the zero-order operators fulfilling the desired conditions up to terms
of order lB it is sufficient to operate the rotation and the dilatation discussed above:

5
(0)
i = 1

2{βik, πk} (17)

the matrixβik being evaluated inX(0) ≡ x. The anticommutator{, } is obviously introduced
in order to make the5(0)

i s Hermitian. A rapid computation confirms our deductions yielding
the commutation relations fulfilled by the zero-order adiabatic operators as

[5(0)
i ,5

(0)
j ] = iεij − i

lB

2
εijhε

hkl{βkm0nml,5(0)
n }

[5(0)
i , X

j

(0)] = −ilBβi
j

[Xi(0), X
j

(0)] = 0

(18)

where0jki = (∂kβi
h)β−1

h

j
and all the functions are evaluated inX(0). 5

(0)
1 and5(0)

2 are
conjugate operators up toO(lB). The commutators depend on the derivative of magnetic
field through the vector-valued matrix

(0k)
j

i =
− 1

2
∂kb

b
−Ak −b−1/2l1k

Ak − 1
2
∂kb

b
−b−1/2l2k

b1/2l1k b1/2l2k 0

 (19)

allowing us to clearly distinguish the effects produced by a variation of the norm of
the magnetic field from that produced by a change of direction. The latter are entirely
geometrical in character as they are taken into account by the magnetic line bundle
connection formA and by the two extrinsic vectorsl1 and l2.
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4.2. First-order operators

Whereas the construction of the zero-order operators is in some way suggested by the
physics of the problem, a more technical effort is required for higher-order terms. The form
of the first-order guiding centre operators is nevertheless suggested by the corresponding
homogeneous expression (4),

Xi(1) = Xi(0) +
lB

2
εkl{βki,5(0)

l } (20)

the matrixβki being again evaluated inX(0). We immediately obtain the new commutation
relation

[5(0)
i ,5

(0)
j ] = iεij − i

lB

2
εijhε

hkl
{
βk
m0nml,5

(0)
n

}+O(lB2)

[5(0)
i , X

j

(1)] = −ilBδ
3
i β3

j +O(lB2)

[Xi(1), X
j

(1)] = −ilB
2εklβk

iβl
j +O(lB3)

(21)

indicating theO(lB2) decoupling of the adiabatic guiding centre operators from5(0)
1 and

5
(0)
2 . All the functions are now evaluated inX(1). Though our analysis will be carried

out up toO(lB2), we also wrote the the first nonvanishing contribution to the commutators
among theXi(1)s, which is of orderlB2. Even if it is unimportant for the present calculation,
it allows us to visualize the very slow time scale of the system.

The construction of the first-order kinematical momenta is performed by looking for
orderlB counterterms to be added to the5(0)

i s. These should be homogeneous second-order
polynomials in the5(0)

i s with coefficients depending onX(1). A rather tedious computation
produces

5
(1)
i = 5(0)

i + lBcklmnij {βmh0jhn, {5(0)
k ,5

(0)
l }} (22)

where cklmnij = 1
24εihε

kh(2δlj + δ3
j δ

l
3)ε

mn + 1
8δ

3
i ε
kh(δlj + δ3

j δ
l
3)εhgε

gmn and all the functions
are evaluated inX(1). When expanded these expressions do not look as complicated as
at a first sight. We nevertheless insist on keeping this notation which greatly simplifies
the following manipulations. The commutation relations among the first-order adiabatic
variables are obtained as

[5(1)
i ,5

(1)
j ] = iεij − i

lB

4
εijkε

kl

{
div b

b
,5

(1)
l

}
+O(lB2)

[5(1)
i , X

j

(1)] = −ilBδi
3β3

j +O(lB2)

[Xi(1), X
j

(1)] = −ilB
2εklβk

iβl
j +O(lB3).

(23)

It is very interesting to observe that a monopole singularity, that is a point of nonvanishing
divergence, represents an obstruction in the construction of the adiabatic operators. Being
concerned with real magnetic field we nevertheless assume divb = 0 and carry on in our
adiabatic analysis.5(1)

1 and 5(1)
2 are then conjugate operators commuting with all the

remaining variables up to terms of orderlB2 and the fast degree of freedom decouples from
the slow and very slow motion up to terms of this order.

4.3. A non-canonical set of operators

At least in principle it is possible to repeat this construction an arbitrary number of times
getting, as power series inlB , a set of adiabatic non-canonical operators{5i,X

i; i = 1, 2, 3}
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fulfilling the commutation relations

[5i,5j ] = iεij [5i,X
j ] = −ilBδ

3
i R
−1
3

j
[Xi,Xj ] = −ilB

2εklb−1R−1
k

i
R−1
l

j
(24)

all the functions being now evaluated inX. These formal series are in general—and have
to be [16]—not convergent, representing nevertheless a very useful tool in the discussion of
the adiabatic behaviour of the system. The description of the problem to a given ordern in
the adiabatic parameterlB requires the knowledge of the firstn+ 1 terms of the adiabatic
series, so that up to terms of orderlB2 we may identify the5is andXis with the5(1)

i s
andXi(1)s respectively. An outlook to the commutation relation (24) allows us to clearly
identify the dependence of the canonical structure on the variation of norm and direction
of the magnetic field. Whereas a suitable redefinition of reference frames inT R3 allows
us to separate the fast degree of freedom from the others, the very slow variables are made
into a pair of non-conjugate operators by an inhomogeneous intensity. A variation of the
field direction even produces the mixing of very slow and slow variables. The description
of these by means of pairs of conjugate operators requires the introduction of curvilinear
coordinates in space [17], the so-calledEuler potentials[18]. We do not insist further on
this point, for the moment observing that under the action of51,52 and53, X1, X2, X3

the Hilbert space of the system separates into the direct sum of two subspaces describing
respectively the rapid rotation of the particle and the guiding centre motion.

5. Expanding the Hamiltonian

The adiabatic operatorsΠ andX constructed in the previous section have been introduced
in such a way as to embody the expected features of the motion of a quantum charged
particle in a weakly inhomogeneous magnetic field. Their main advantage lies, in fact, in
the very suitable form assumed by the Pauli Hamiltonian when rewritten in terms of these
operators. To perform this task we first have to invert the power series expressing5i and
Xi in terms of the operatorsπis andxis and, second, to replace these in (13). This yields
the Hamiltonian as a power series in the magnetic lengthlB ,

H = H(0) + lBH(1) + lB2H(2) + · · · (25)

allowing the adiabatic separation of the fast degree of freedom from the slow/very
slow motion and the evaluation of approximate expressions of the spectrum and of the
wavefunctions of the system. In order to get theπis andxis in terms of the5is andXis we
first recall thatXi = Xi(1)+O(lB2). By rewritingXi(1) in terms of the5(0)

i s andXi(0) = xis,

equation (20),5(0)
i in terms of theπis andxis (equation (17)), and by solving with respect

to xi , we then obtainxi as a function of theπis and theXis,xi = xi(π,X). This allows us
to rewrite5(0)

i as a function of theπis andXis. Recalling finally that5i = 5(1)
i +O(lB2)

and using (22) we immediately get5i in terms of theπis andXis,5i = 5i(π,X). The
inversion of this relation, order by order inlB , allows us to getπi andxi in terms of the
adiabatic operators. The computation gives

πi = 1
2{β−1j

i ,5j } +
lB

2
cklmnjh {β−1j

i β
o
m0

h
on, {5k,5l}} +O(lB2) (26)

xi = Xi − lBεklβik5l +O(lB2) (27)

where cklmnij = 1
2δ
n
i δ
k
j ε

ml − 2cklmnij . As a useful check the commutation relations (14) may
be re-obtained by means of (24).



2174 P Maraner

The substitution of (26) and (27) in the Pauli Hamiltonian (13) yields immediately the
first two terms of the adiabatic expansion (25),

H(0)/h̄ωB = 1
2β
−1k
i β
−1l
i5k5l + gbiσi (28)

H(1)/h̄ωB = β−1p
i β
−1q
i cklmnpj βom0

j
on{5k5q5l} − gεklβhk (∂hbi)σi5l . . . (29)

where the notation{5k5q5l} = 5k5q5l + 5l5q5k has been introduced. In order
to get some more physical insight into these expressions we now abandon our compact
notation in favour of a more transparent one. By recalling the definition (15) ofβi

j (x),
definition (19) of 0kij (x) and the explicit expression of the inhomogeneous dilatation
Di

j (x) = diag(b1/2(x), b1/2(x), 1), we rewrite everything in terms of the magnetic field
and of other quantities capable of a direct physical interpretation. The full expansion of the
zero-order Hamiltonian (28) gives

H(0)/h̄ωB = 1
253

2+ b[J + g(e3 · σ)] (30)

where J represents the harmonic oscillator Hamiltonian constructed by means of the
canonical variables51 and52, J = (51

2 + 52
2)/2. The norm of the magnetic field

b(X) is evaluated in the adiabatic guiding centre operatorsX. We observe that while the
51–52 degree of freedom decouples to this order from the slow and very slow variables the
spin does not. The separation, up to higher-order terms, of the fast motion(rotation+ spin)
requires in fact a subsidiary zero-order transformation which we will perform in the next
section. For the moment let us observe that, up to the spin term, the zero-order Hamiltonian
(30) precisely embodies the expected behaviour of the system: the canonical pair of
operators51–52 takes into account thefast rotation of the particle around its guiding centre,
while the non-canonical variables53–X3 describe the slow motion along the magnetic field
lines by means of an effective ‘kinetic energy+potential energy’ Hamiltonian. The norm of
the magnetic fieldb(X) plays the role of the effective potential. As long asO(lB2) terms
are ignored the very slow dynamical variablesX1–X2 appear only as adiabatic parameters
driving the slow motion, whereas a more accurate analysis indicates them as taking into
account the very slow drift in the directions normal to the field [6].

The full expression of the first-order Hamiltonian (29) appears more complicated. The
replacement ofβij (x) and0kij (x) by means of (15) and (19) yields in fact the expression

H(1)/h̄ωB = −b−1/2εµν(eµ · ∇b)[ 2
3Jν + g(e3 · σ)5ν ] − 2

3b
1/2(eµ · A)Jµ

+[ 1
2(e1 · l2− e2 · l1)− (e3 · A)]J53+ 1

4(e1 · l2+ e2 · l1)(51
2−52

2)53

− 1
4(e1 · l1− e2 · l2){51,52}53+ b−1/2[(e3 · l2)51− (e3 · l1)52]53

2

−gb1/2εµν [(eµ · l1)(e1 · σ)+ (eµ · l2)(e2 · σ)]5ν (31)

indicating the first-order coupling among the various operators. The notationJµ =
1
2δ
αβ5α5µ5β has been introduced and all the functions are evaluated inX. As expected

from dimensional considerationsH(1) depends only on the first-order derivatives of the
field. It is nevertheless worthwhile to stress that the gradient of the magnetic-field-norm,
gradb =∇b, appears only in the first term of the right-hand side of this expression. All the
remaining terms depend only on the quantitiesA, l1 and l2 completely characterizing the
intrinsic/extrinsic geometry of the magnetic line bundleM. To a large extent, therefore, the
complication of this expression is produced by the variation of direction of the magnetic field,
that is, by the nontrivial geometry ofM. It is not yet time to comment on the structure
of H(1). First of all, it is in fact necessary to operate a suitable unitary transformation
separating the zero-order fast motion from the other degrees of freedom, that is diagonalizing
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the the spin terme3 · σ. This will produce a modification of the first-order term of the
adiabatic expansion. Secondly, it is possible to drastically simplify the form ofH(1) by
operating a suitable first-order unitary transformation. The strategy is nothing but the
quantum equivalent of the so-calledaveraging transformationof classical mechanics and
sheds light on the physical content of (31).

6. Quantum averaging transformations

A well known strategy in dealing with the adiabatic separation of fast and slow variables in
classical mechanics consists in performing a series of successive canonical transformations
(the averaging transformations) separating, order by order in some adiabatic parameter, the
rapid oscillation of the system from its slow averaged motion. As the analysis depends
essentially on the canonical structure of the problem, it generalizes immediately to quantum
mechanics, the canonical transformations being replaced by suitable unitary transformations.
The full adiabatic expansion describing the motion of a spin degree of freedom adiabatically
driven by external parameters has been obtained along these lines by Berry [16]. Littlejohn
and Weigert [4] employed the method in discussing the first adiabatic corrections to the
semiclassical motion of a neutral spinning particle in an inhomogeneous magnetic field. We
shall consider therefore a set of unitary operators

U(n) = exp{ilBnL(n)} (32)

n = 0, 1, . . . such that fast and slow/very slow degrees of freedom separate up toO(lBn+1)

in the Hamiltonian obtained by the successive application ofU(0), U(1), . . . ,U(n). Whereas
in classical mechanics it is natural to consider the averaging transformation as defining new
canonical variables, in quantum mechanics it appears more convenient to keep the canonical
operators fixed and transform the Hamiltonian.

6.1. Zero-order transformation

The zero-order separation of the fast and slow/very slow motion requires the diagonalization
of the spin termgb(X)(e3(X)·σ) of Hamiltonian (30). Denoting byρij (x) the infinitesimal
generator of the rotationRij (x) bringing the fixed frame{x̂, ŷ, ẑ} into the adapted frame
{e1(x), e2(x), e3(x)}, Rij = (eρ)i

j ≡ δ
j

i + ρij + 1
2ρi

kρk
j + · · ·, the aim is achieved by

choosing

L(0) = − 1
2ε
ijkρij (X)σk (33)

the matrixρij = ρi
j being evaluated in the guiding centre operatorsX. Because of the

commutation relations (24) the operatorU(0) commutes with51, 52 and therefore withJ .
It producesO(lB) terms when commuting with53 andO(lB2) terms when commuting with
functions ofX. In evaluating the new HamiltonianH′ = U(0)HU(0)† = H(0)′+lBH(1)′+· · ·
up to terms of orderlB2 we have only to worry about the action ofU(0) on σ and53. A
very rapid computation yields the transformation rule

U(0)(ei · σ)U(0)† = σi +O(lB2) (34)

while the action ofU(0) on53, U(0)53U
(0)† = 53+U(0)[53, U

(0)†], may be easily evaluated
by computing the commutator in the original set of operatorsπis andxis and transforming
back to adiabatic variables

U(0)53U
(0)† = 53+ lB(e3 · l2)σ1− lB(e3 · l1)σ2+ lB(e3 · A)σ3+O(lB2). (35)
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SubjectingH(0) andH(1) to the zero-order averaging transformationU(0) and by using (34)
and (35) we obtain the new adiabatic expansion

H(0)′/h̄ωB = 1
253

2+ b(J + gσ3) (36)

H(1)′/h̄ωB = −b−1/2εµν(eµ · ∇b)( 2
3Jν + gσ35ν)− 2

3b
1/2(eµ · A)Jµ

+[ 1
2(e1 · l2− e2 · l1)J − (e3 · A)(J − σ3)]53

+ 1
4(e1 · l2+ e2 · l1)(51

2−52
2)53− 1

4(e1 · l1− e2 · l2){51,52}53

+b−1/2[(e3 · l2)51− (e3 · l1)52]53
2+ [(e3 · l2)σ1− (e3 · l1)σ2]53

−gb1/2εµν [(eµ · l1)σ1+ (eµ · l2)σ2]5ν . . . . (37)

All the functions are evaluated inX. The fast and slow/very slow motions are separated
in this way in the zero-order term of the adiabatic expansion but not in the first-order term.

6.2. First-order transformation

The application of the first-order averaging transformationU(1) to H′ produces the new
HamiltonianH′′ = U(1)H′U(1)† = H(0)′ + lB(H(1)′ + i[L(1),H(0)′])+· · ·. It is then possible
to simplify the first-order term of the adiabatic expansion by choosingL(1) in such a way
that its commutator withH(0)′ cancels as many terms ofH(1)′ as possible. The analysis
of the commutation relation involved and a little thought indicates that it is possible to
annihilate all but the third term of (37) by choosing

L(1) = −b−3/2(eµ · ∇b)( 2
3Jµ + gσ35µ)+ 2

3b
−1/2εµν(eµ · A)Jν

− 1
8b
−1(e1 · l2+ e2 · l1){51,52}53− 1

8b
−1(e1 · l1− e2 · l2)(51

2−52
2)53

−b−3/2[(e3 · l2)52+ (e3 · l1)51]53
2+ g−1b−1[(e3 · l2)σ2+ (e3 · l1)σ1]53

+ g

g2− 4
b−3/2[(eµ · l1)(2σ1δ

µν − gσ2ε
µν)−(eµ · l2)(2σ2δ

µν + gσ1ε
µν)]5ν.

(38)

The commutators of the zero-order Hamiltonian (36) with the various terms ofL(1) yields
the terms of (37) times the imaginary factor i, in such a way that they cancel in the new
adiabatic expansion. To this are subjected all the terms but the third. It is in fact clear that
no operator may be found in such a way that its commutator with (36) produces a term
proportional toJ53 andσ353. The third term of (37) may therefore not be removed from
the adiabatic expansion representing the real first-order coupling among fast and slow/very
slow motions and not a complication produced by a wrong choice of variables. Its relevance
in the context of the classical guiding centre motion has been first recognized by Littlejohn
[1]. It is therefore not a surprise to rediscover it in the discussion of the quantum guiding
centre dynamics. The quantum averaging method therefore produces the adiabatic expansion

H(0)′′ = H(0)′ (39)

H(1)′′/h̄ωB = [ 1
2(e1 · l2− e2 · l1)J − (e3 · A)(J − σ3)]53 . . . . (40)

We observe that whereas the zero-order terms (36) depend only on the magnetic-field-norm
b (other than on the commutation relations (24)) the first-order term (40) is completely
characterized by the Frobenius invariant (12), and by the magnetic field lines torsion (11).
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7. Quantum guiding centre dynamics and magnetic-induced geometric-magnetism

The construction of a suitable set of non-canonical operators embodying the classically
expected features of the motion of a charged particle in an inhomogeneous magnetic field
and the quantum averaging method allow us to rewrite the Pauli Hamiltonian (13) in such
a way that the fast degrees of freedom separate (up to terms of orderlB

2) from the guiding
centre dynamics. The transformation to the adiabatic operators5is, Xis, (20) and (22),
and the application of the zero- and first-order quantum averaging operators, (33) and (38),
produces in fact the Hamiltonian

H/h̄ωB = 1
253

2+ b(J + gσ3)− lB [τ(J − σ3)− 1
2FJ ]53+O(lB2). (41)

Disregarding terms of order higher thanlB the operatorsJ—representing the magnetic
moment of gyration of the particle—andσ3 are constants of motion of the system. Frozen
the particle in one of itsJ and σ3 eigenstates Hamiltonian (41) describes therefore the
corresponding guiding centre dynamics. As long asO(lB2) are ignoredX1 andX2 appear
as non-dynamical external adiabatic parameters and only the53–X3 degree of freedom,
representing in the classical limit the drift of the particle along the magnetic field lines,
is dynamically relevant. To this order, therefore, the quantum guiding centre dynamics
is described by a one-degree-of-freedom Hamiltonian given by the sum of the kinetic
energy53

2/2 and of an effective potential proportional tob(X). As 53 is a slow
variable, that is of the same magnitude of the first adiabatic correction, the orderlB term
[τ(J − σ3)−FJ/2]53 may be identified with a magnetic-like interaction and re-absorbed
in the zero-order Hamiltonian as a gauge potential. The guiding centre Hamiltonian can be
rewritten in this way in the familiar form

H/h̄ωB = 1
2(53− lBA(X))2+ V (X)+O(lB2) (42)

with

A(X) = (J − σ3)τ (X)− J
2
F(X) (43)

V (X) = (J + gσ3)b(X). (44)

As it might be expected from the general discussion of section 3 the magnetic field line
torsionτ = e3 · A appears as (a part of) a gauge potential in the effective slow dynamics,
taking into account the anholonomy produced by the non-trivial parallel transport of the
magnetic line bundleM. Perhaps unexpected, at least form this point of view, is the
contribution given by the Frobenius invariant. Let us in fact compare the guiding centre
motion of a charged particle along a magnetic field line with the propagation of light in
a coiled optical fibre [19] or with the motion of an electron constrained on a twisted line
[20]. In both cases—sharing the same mathematical background—the adiabatic dynamics
is coupled with an effective vector potential proportional to the torsion of the optical
fiber or of the twisted line. The analogous contribution appears in the guiding centre
motion,(J −σ3)τ (X), but it is not the whole story. The particle not being homogeneously
constrained in the neighbourhood of a line, it sensibly results in the variation of the geometry
in the magnetic field lines surrounding the one on which the guiding centre is located. If
all the field lines had the same geometry, the foliation ofR3 in terms of them would be
trivial, the Frobenius invariant zero and the situation analogous the examples above. The
geometry of this foliation is in general non-trivial as it yields a further contribution to the
gauge potentialA(X) proportional to the Frobenius invariant,JF(X)/2. It is obviously
not possible, in the general case, to remove the gauge potential (43) by means of a suitable
choice of gauge.
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In order to make the identification of (42) with a one-degree-of-freedom Hamiltonian
(two, if we want to considerX1, X2 as dynamical) complete, it is necessary to replace the
5is, Xis by a set of canonical operators. The task is achieved by introducing a Darboux
coordinate frame xi = xi (x), i = 1, 2, 3, bringing the closed skew-symmetric 2-formbij (x)
in the canonical form,

bkl(x)
∂xk

∂xi
∂xl

∂xj
= εij (45)

(x1(x), x2(x) may be identified with a pair of Euler potentials [18] for the magnetic field
b(x),∇x1∧∇x2 = b, while x3(x) with the arc length of the magnetic field lines). Defining
Xi = xi (X), i = 1, 2, 3 we get the canonical commutation relations [53,Xi ] = −ilBδi3
and [Xi ,Xj ] = −ilB2εij allowing the identification of the operators describing the slow and
the very slow degrees of freedom. It is in principle possible to start from the beginning
by introducing such curvilinear coordinates inR3 and working out the problem by using
a canonical set of operators [17]†. Nevertheless, whereas the existence of a Darboux
coordinate frame is always guaranteed by the Darboux theorem, it is hardly ever possible
to find it explicitly and to proceed to the construction of the Xis. For this reason—though
the5is, Xis appear as the most natural variables for the problem—the explicit construction
of a set of non-canonical operators appears a better strategy.

8. Conclusions

The main difficulty in addressing the separation of fast and slow degrees of freedom in the
study of an adiabatic system consist generally in finding out a suitable set of variables
adapting with sufficient accuracy to the different time scale behaviours of the system.
Starting from the homogeneous case and the canonical commutation relations (5) we showed
how the analysis of the canonical structure of a charged spinning particle moving in an
external inhomogeneous magnetic field leads naturally to the construction—as power series
in the magnetic length lB—of a suitable set of non-canonical operators. This allows us to
systematically take into account the coupling between spatial and spin degrees of freedom.
The new variables fulfil the very compact commutation relations (24) clearly displaying the
dependence of the canonical structure on the norm and direction of the external magnetic
field. In terms of the new operators the Pauli Hamiltonian can be rewritten as a power
series in the adiabatic parameter lB which may be brought into a particular simple form by
operating suitable unitary transformations. In this way thefast degree of freedom of the
system is separated from the remaining degrees of freedom up to terms of order l2B . The
resulting effective guiding centre dynamics displays geometric-magnetism: (i) the coupling
with the geometry induced gauge potential (43), depending on the magnetic field lines
torsion (11) and on the Frobenius invariant (12), (ii) the coupling with the scalar potential
(44), proportional to the magnetic field norm. This completely extends to the quantum
domain the previous classical treatments of the problem showing that the anholonomy first
studied by Littlejohn in the classical guiding centre theory plays an equivalent role in the
discussion of the quantum problem. It is a feature of the canonical structure of the system,
after all. The geometrical mechanism responsible for the appearance of induced gauge
structures has also been analysed in some detail and formalized in the geometry of the
magnetic line bundleM.

† The introduction of Darboux coordinate produces automatically the framing ofTxR
3 by means of an adapted

frame {e1(x), e2(x), e3(x)}. Our method, on the other hand, consists in adapting the frame ofTxR
3 without

introducing the curvilinear coordinates.



A quantal guiding centre theory 2179

In conclusion we observe that our discussion gives the solution of only half of the
problem. The guiding centre dynamics is still characterized by the presence of afast and a
slow time scale(slow→ fast, very slow→ slow) and is therefore amenable to a treatment
by means of adiabatic techniques. Nevertheless, the remaining problem is not of such a
deep geometrical nature as the original one.
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